Arabidopsis PLETHORA Transcription Factors Control Phyllotaxis

نویسندگان

  • Kalika Prasad
  • Stephen P. Grigg
  • Michalis Barkoulas
  • Ram Kishor Yadav
  • Gabino F. Sanchez-Perez
  • Violaine Pinon
  • Ikram Blilou
  • Hugo Hofhuis
  • Pankaj Dhonukshe
  • Carla Galinha
  • Ari Pekka Mähönen
  • Wally H. Muller
  • Smita Raman
  • Arie J. Verkleij
  • Berend Snel
  • G. Venugopala Reddy
  • Miltos Tsiantis
  • Ben Scheres
چکیده

The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis.

Lateral organ distribution at the shoot apical meristem defines specific and robust phyllotaxis patterns that have intrigued biologists and mathematicians for centuries. In silico studies have revealed that this self-organizing process can be recapitulated by modeling the polar transport of the phytohormone auxin. Phyllotactic patterns change between species and developmental stages, but the pr...

متن کامل

Phyllotaxis and Rhizotaxis in Arabidopsis Are Modified by Three PLETHORA Transcription Factors

BACKGROUND The juxtaposition of newly formed primordia in the root and shoot differs greatly, but their formation in both contexts depends on local accumulation of the signaling molecule auxin. Whether the spacing of lateral roots along the main root and the arrangement of leaf primordia at the plant apex are controlled by related underlying mechanisms has remained unclear. RESULTS Here, we s...

متن کامل

The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in Arabidopsis.

Plant leaves and flowers are positioned along the stem in a regular pattern. This pattern, which is referred to as phyllotaxis, is generated through the precise emergence of lateral organs and is controlled by gradients of the plant hormone auxin. This pattern is actively maintained during stem growth through controlled cell proliferation and elongation. The formation of new organs is known to ...

متن کامل

The shoot apical meristem and development of vascular architecture1

The shoot apical meristem (SAM) functions to generate external architecture and internal tissue pattern as well as to maintain a self-perpetuating population of stem-cell-like cells. The internal three-dimensional architecture of the vascular system corresponds closely to the external arrangement of lateral organs, or phyllotaxis. This paper reviews this correspondence for dicotyledonous plants...

متن کامل

RETRACTED: A PLETHORA-Auxin Transcription Module Controls Cell Division Plane Rotation through MAP65 and CLASP

Despite their pivotal role in plant development, control mechanisms for oriented cell divisions have remained elusive. Here, we describe how a precisely regulated cell division orientation switch in an Arabidopsis stem cell is controlled by upstream patterning factors. We show that the stem cell regulatory PLETHORA transcription factors induce division plane reorientation by local activation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011